Unifying Exact Completions
نویسندگان
چکیده
منابع مشابه
Unifying exact completions
We define the notion of exact completion with respect to an existential elementary doctrine. We observe that the forgetful functor from the 2-category exact categories to existential elementary doctrines has a left biadjoint that can be obtained as a composite of two others. Finally, we conclude how this notion encompasses both that of the exact completion of a regular category as well as that ...
متن کاملExact completions and toposes
Toposes and quasi-toposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the different ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding “good” quotients of equivalence relations to a simple catego...
متن کاملSemi-abelian Exact Completions
The theory of protomodular categories provides a simple and general context in which the basic theorems needed in homological algebra of groups, rings, Lie algebras and other non-abelian structures can be proved [2] [3] [4] [5] [6] [7] [9] [20]. An interesting aspect of the theory comes from the fact that there is a natural intrinsic notion of normal monomorphism [4]. Since any internal reflexi...
متن کاملExact Completions and Small Sheaves
We prove a general theorem which includes most notions of “exact completion” as special cases. The theorem is that “κ-ary exact categories” are a reflective sub-2-category of “κ-ary sites”, for any regular cardinal κ. A κ-ary exact category is an exact category with disjoint and universal κ-small coproducts, and a κ-ary site is a site whose covering sieves are generated by κ-small families and ...
متن کاملClosure Operators in Exact Completions
In analogy with the relation between closure operators in presheaf toposes and Grothendieck topologies, we identify the structure in a category with finite limits that corresponds to universal closure operators in its regular and exact completions. The study of separated objects in exact completions will then allow us to give conceptual proofs of local cartesian closure of different categories ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Categorical Structures
سال: 2013
ISSN: 0927-2852,1572-9095
DOI: 10.1007/s10485-013-9360-5